
International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 1

ISSN 2229-5518

High-speed processing of larger Edge-
detection filters using NVIDIA CUDA

Architecture
First Sowjanya Latha. Mudumba, Second K.

Nageswara rao, Third

Yugandhar Garapati

Abstract — Image processing on large images is highly computation intensive. General purpose CPUs with Multiple Cores can provide

some level of computational speed. Spatial filters used in Image Processing are inherently parallel. By using a Parallel computing
Architecture such as CUDA "Compute Unified Device Architecture", huge improvements can be achieved in processing times. NVidia’s

GPUs that follow CUDA achieved significant improvement in Canny Edge detection algorithm. Typical Canny edge-detection filter is of size
3x3. In many real applications, the edge detection needs higher size of filters. The aim of this paper is to study the improvement in
processing times on larger edge detection filters when Nvidia’s GPUs are used for computation in comparison to processing the same on

General purpose CPUs. In this paper, we describe some of the benefits associated with implementation of canny using CUDA and we are
looking at possible development pitfalls, solutions and performance results.

Index terms— Edge Detection, CUDA, GPU, Parallel Processing

—————————— ——————————

1. Introduction
Many image processing applications operates on higher

resolution images, which is highly computation intensive

and more time consuming, especially if multiple operations

have to be performed on an image. This problem becomes

worse when the input is very large. General purpose CPUs

we can some level of parallelism in processing. Using a

parallel computing architecture “CUDA” (Compute

Unified Device Architecture)[3] we can achieve processing

time improvements. Recent GPUs (Graphics processing

unit) came with multiple cores, which can be used for

general purpose parallel computation. GPU is connected

with global memory and follows SIMD (Single Instruction

Multiple Data) architecture, so that we can launch multiple

parallel threads for to perform an operation on each pixel

with this we can achieve high computational speed. Where

general purpose CPUs follows SISD (Single Instruction

Single Data), we can obtain some level parallelism with

CPU having multiple cores using Parallel constructs, which

is very cost effective. GPU is a specialized unit generally

used for 2D and 3D graphics acceleration. Implementation

of image processing algorithms on GPU, reduces the

overload on CPU and allows CPU to perform other

operations while algorithm is running on GPU and reduces

the processing time as well as with low cost.

Edge detection algorithms are most commonly used

algorithms in image processing. Canny edge detection

algorithm is most commonly used edge detection algorithm

to detect edges in an image. Following are the

improvements made in Canny edge detection method

among all other edge detection methods.1. Low error rate.

2. Well localization of edge points. 3. To have only one

response to single edge. Based on these criteria, the edge

detector first smoothes the image to eliminate the noise in

an image. It then finds the gradient and nonmaximum

suppression is applied and then hysteresis thresholding is

applied to reduce the gradient array. Typically filter sizes

we used in canny edge detection algorithm is 3x3. Real time

image processing applications operates on higher

resolution images with larger filters. Usually edge detection

algorithm[1] consists of four steps.

Step1: Gaussian filtering Step2: Sobel filtering Step3: non

maximum Suppression Step4: hysteresis thresholding. In

Step1 Gaussian filter is applied to remove the noise from

the image by applying Gaussian filter. In our application

we tried 3x3, 5x5 and 7x7 size filters. The main advantages

of small filters is it is very quick to compute and only few

input pixels need to be examined to determine value of

each output pixel and here the simple operations we used

are addition and subtraction. A main disadvantage of small

kernel is very sensitive to noise and produces weak

response to genuine edges unless they are very sharp.

Figures 1(a) is an examples of Gaussian filter of size 5x5. In

Step2 we used a pair of sobel kernels to detect edges and

intensity changes in horizontal and vertical directions. In

our application we used filters of size 3x3 and 5x5, In

figure2(a) represents the horizontal sobel kernel dx of size

5x5, figure2(b) represents the vertical sobel kernel dy of size

5x5. Technically, it is a discrete operator, computing an

approximation of the gradient of the image intensity

function. At each point in the image, the results of the sobel

operator are either the corresponding gradient vector or

norm of the vector. By applying these dx and dy filters in

horizontal and vertical directions, we obtain edges in the

image, then compute the magnitude M and gradient

direction at each pixel using dx and dy. Below are the

following formulas

M= , gives the magnitude of the pixel.

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 2

ISSN 2229-5518

 , gives the gradient of the pixel

0.04 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04

Figure1(a) 5x5 Gaussian filter

Figure2(a) 5x5 sobel filter dx

Figure2(b) 5x5 sobel filter dy

Step4 is non-maximum suppression, in this local maximum

along with gradient direction is detected. Step5 is hysteresis

thresholding, we are considering two threshold values

t_Low and t_High. The pixels whose M > t_High are strong

edge pixels, if t_Low<M<t_High are weak edge pixels and

if M<t_Low are considered as non edge pixels. Based on

this classification (1) a strong pixel is an edge pixel. (2) a

weak edge pixel is an edge pixel if it is adjacent to an edge

pixel (3) Non edge pixel is not an edge

We implemented edge detection algorithm on CUDA by

segmenting the image into number of blocks and then filter

is applied on each pixel within a block by launching

number of parallel threads for each pixel depending on the

GPU memory.

Usage of larger filters in implementation of edge detection

algorithm on GPU is limited depending on the memory of

the GPU.

2. Implementation
CUDA hardware architecture consists of SM (Streaming

Microprocessors) and Global memory. Each streaming

microprocessor consists of eight processor cores and

threads, which runs in parallel. All the threads in Streaming

Microprocessor can access the shared memory which is

shared among all threads in a Streaming Microprocessor.

Global memory is larger in size and can be accessed by all

Streaming microprocessors. However, the accessing time of

global memory is generally longer than shared memory

access time; here the shared memory of each streaming

microprocessor is used like as cache memory of a global

memory.

Figure3 CUDA hardware (GPU) Architecture

In our implementation we used global memory for reading

and writing operations. The input image is stored in the

global memory because shared memory is too small.

Implementation of the steps followed in the edge detection

algorithm is shown diagrammatically in the Figure4.

Gaussian filter:

In this we load the input image into global memory of the

GPU. Applied Gaussian filter on each pixel by launching

number of parallel threads. A Gaussian filter is used for the

initial step of smoothing as it has a simple mask. The mask

used here is usually smaller than the actual image, So that

the mask can slid over the image, manipulating the square

of pixels at a time. Using CUDA we can perform these

manipulations in parallel by launching multiple threads, so

that it improves the performance time. The output of

Gaussian filter is written on to global memory of the GPU.

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-1 -1 -1 -1 -1

1 0 0 0 -1

1 0 0 0 -1

1 0 0 0 -1

1 0 0 0 -1

1 0 0 0 -1

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 3

ISSN 2229-5518

Figure4 Implementation of Canny edge detection

algorithm using CUDA

Sobel filter:

It reads the output of the Gaussian filter from the global

memory of the GPU, and applies horizontal filter in X-

direction and vertical filter in Y-direction in parallel on each

pixel, the output of the sobel filter is written back to global

memory of the GPU. After that magnitude M and gradient

 is computed and the result is written on to global

memory of the GPU.
Non-Maximum Suppression:

Using magnitude M and the gradient is computed on

each pixel, these values are used for to find whether the

pixel is local maximum or not. If the pixel is local

maximum, it is recorded into global memory as edge pixel.
Hysteresis Threshold:

In this we applied two threshold values to determine

whether the pixel is strong edge pixel, weak edge pixel or

not an edge. If M>t_High then it is classified as Strong edge

pixel, if t_Low<M<t_High then it is consider as weak edge

pixel and if M<t_Low then it is classified as no edge pixel.

3. Experimental Results
For implementation, we used a single CPU PC with 4GB

RAM and I5 processor, GPU used is NVIDIA GeForce

GT530. For the purpose of comparison of the performance

and results we implemented conventional software

approach running on a single CPU, same algorithm which

runs on GPU. Following table shows performance

comparison between CUDA and GPU.

Name of

the

Kernel

Charact

eristic

Feature

Image

Size

Averag

e Time

observe

d

CPU

(in

ticks)

Average

Time

observed

GPU

(in ticks)

Edge

Detectio

n

Algorith

m

Color

Images

3456x5184

Bmp

image

data.

3x 3:

8752

5x 5:

18720

7x 7:

33509

3x 3:

858

5x 5:

1887

7 x 7:

3416

Edge

Detectio

n

Algorith

m

Gray

Images

3456x5184 3x 3:

4150

5x 5:

7255

7x 7:

11934

3x 3: 562

5x 5: 1014

7x 7: 1685

With the use of CUDA achieved processing time

improvements 9 times of CPU ticks. Another advantage of

using CUDA is we can optimize the time of CPU while the

image processing algorithm runs on GPU.

The processing time improvement using CUDA is also

depends on the GPU hardware, which we used for the

computation. Segmentation of processing problems and

algorithms is a big threat. Proper understanding of the GPU

architecture is required to take full advantage of the

available hardware.

4. Conclusion
In this paper, we implemented edge detection algorithm on

CUDA with varying sizes of filters of sizes 3x3, 5x5 and

7x7. Comparing the performance of CPU with GPU,GPU

gave 9 times speed up in terms of ticks. Here we can reduce

the workload on CPU by transferring the computations on

to GPU, So that we can optimize the performance of the

CPU and GPU to achieve better performance in processing

of the algorithms. We used a GPU-GT530 having capacity

of 1GB with 98 cores for our implementation. We got GPU

stopped working problem during edge detection algorithm

on a color image of size (3456 X 5184) when we use a filter

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 4

ISSN 2229-5518

mask size of 9x9, but with the same 9X9 filter, edge

detection algorithm is successfully on a grayscale (single

channel) Image of size (3456 X 5184) and shows 9 times

performance improvement in terms of CPU ticks. For

smaller images which is having resolution (1200 X 800) it

ran up to 35x35 filter and shows continuous improvement(9

times performance improvement when compare to CPU).

The edge detection algorithm for color image takes more

time when compare to gray image because color image

contains each pixel information in three channels (RGB), for

gray image information is stored in a single channel. We

may achieve the better processing time improvements with

GPU having many cores. The processing times and

performance of the GPU also depends on type of the

hardware we used for processing.

References
 [1] GPU Kohei Ogawa, Yasuaki Ito, “Efficient Canny Edge

Detection Using a GPU” in 2010 First International Conference on

Networking and Computing

 [2] R Farivar, D Rebolledo, E Chan,R Campbell, “A Parallel

Implementation of K-Means Clustering on GPUs” in Proceedings

of the 14th International Conference on High Performance Computing,

2007, pp. 197-208

 [3] NVIDIA, NVIDIA CUDA Programming Guide, July 2009

 [4]NVIDIA_CUDA_Tutorial_No_NDA_Apr08 by NVIDIA

corporation

Sowjanya Latha. Mudumba pursuing

M.Tech in Mother Teressa Institute Of

Science and Technology, sathupally.

Areas of interest are Networking and

computing.

Email_id :latha.mudumba.it@gmail.com

K.Nageswararao working as a Associate

Professor in Mother Teressa Institute Of

Science and Technology, Sattupalli,

Khammam(Dist).

Email_id :nageswararaokapu@yahoo.com

Yugandhar Garapati working as a

Associate Prof in Mother Teressa Institute

Of Science and Technology, Sattupalli,

Khammam(Dist).

Email_id : yugandhar.garapati@gmail.com

